Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

نویسندگان

  • Chun - Wei Lin
  • Yu - Lin Chen
چکیده

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system. Keywords—Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle

This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...

متن کامل

Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold

The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...

متن کامل

A steam Rankine cycle with two-stage pumping to enhance the waste heat recovery from internal combustion engines

In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean ...

متن کامل

Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery

This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system ...

متن کامل

Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013